Causal Inference: What If

Chapter 1 to 3

Kunwoong Kim

Seoul National University

July 22, 2021

Table of Contents

Introduction
1．A definition of causal effect
2．Randomized experiments
3．Observational studies

\square

Introduction

- We want to answer the following questions.
- Does cigaratte smoking causes lung cancer?
- Does the obesity increases mortality?
- Measures of causal effect
- From randomized experiments to observational studies

Table of Contents

Introduction

1. A definition of causal effect
2. Randomized experiments
3. Observational studies

1. A definition of causal effect

Let $Y \in\{0,1\}$ (e.g., lung cancer) as an outcome of an input X. Denote Y^{a} as the outcome under the action $A=a \in\{0,1\}$ (e.g., smoking).
Definition (Counterfactual outcome)
The variables $Y^{a=1}$ and $Y^{a=0}$ are called as counterfactual outcomes.

Definition (Causal effect for an individual)

The treatment A has a causal effect on an individual's outcome Y if $Y^{a=1} \neq Y^{a=0}$ for the individual.

Definition (Consistency)
If $A=a$, then $Y^{a}=Y^{A}=Y$.

- Individual causal effects cannot be identified: we have missing data. We cannot observe the counterfactual world.

1. A definition of causal effect

Thus we provide another definition of causal effect: average causal effect. We call an average causal effect of treatment A on an outcome Y is present if

$$
\operatorname{Pr}\left(Y^{a=1}=1\right) \neq \operatorname{Pr}\left(Y^{a=0}=1\right)
$$

or equivalently,

$$
\mathrm{E}\left(Y^{a=1}\right) \neq \mathrm{E}\left(Y^{a=0}\right)
$$

1. A definition of causal effect

We compute the average causal effects by the following three measures.

1. Causal risk difference

$$
\operatorname{Pr}\left(Y^{a=1}=1\right)-\operatorname{Pr}\left(Y^{a=0}=1\right)=0
$$

2. Causal risk ratio

$$
\operatorname{Pr}\left(Y^{a=1}=1\right) / \operatorname{Pr}\left(Y^{a=0}=1\right)=1
$$

3. Causal odds ratio

$$
\frac{\operatorname{Pr}\left(Y^{a=1}=1\right) / \operatorname{Pr}\left(Y^{a=1}=0\right)}{\operatorname{Pr}\left(Y^{a=0}=1\right) / \operatorname{Pr}\left(Y^{a=0}=0\right)}=1
$$

1. A definition of causal effect

We say that treatment A and outcome Y are dependent (associated) if $\operatorname{Pr}(Y=1 \mid A=1)-\operatorname{Pr}(Y=1 \mid A=0) \neq 0$.

1. Associational risk difference

$$
\operatorname{Pr}(Y=1 \mid A=1)-\operatorname{Pr}(Y=1 \mid A=0)=0
$$

2. Associational risk ratio

$$
\operatorname{Pr}(Y=1 \mid A=1) / \operatorname{Pr}(Y=1 \mid A=0)=1
$$

3. Associational odds ratio

$$
\frac{\operatorname{Pr}(Y=1 \mid A=1) / \operatorname{Pr}(Y=0 \mid A=1)}{\operatorname{Pr}(Y=1 \mid A=0) / \operatorname{Pr}(Y=0 \mid A=0)}=1
$$

1. A definition of causal effect

Association is not causation.

- Two disjoint subsets determined by actual treatment vs. Population under two different treatment values

$$
\operatorname{Pr}\left(Y^{a}\right) \neq \operatorname{Pr}(Y \mid A=a)
$$

vs.

vs.

Table 2.1				
	A	Y	Y^{0}	Y^{1}
Rheia	0	0	0	$?$
Kronos	0	1	1	$?$
Demeter	0	0	0	$?$
Hades	0	0	0	$?$
Hestia	1	0	$?$	0
Poseidon	1	0	$?$	0
Hera	1	0	$?$	0
Zeus	1	1	$?$	1
Artemis	0	1	1	$?$
Apollo	0	1	1	$?$
Leto	0	0	0	$?$
Ares	1	1	$?$	1
Athena	1	1	$?$	1
Hephaestus	1	1	$?$	1
Aphrodite	1	1	$?$	1
Cyclope	1	1	$?$	1
Persephone	1	1	$?$	1
Hermes	1	0	$?$	0
Hebe	1	0	$?$	0
Dionysus	1	0	$?$	0

Figure: 1.1

Table of Contents

Introduction

1. A definition of causal effect
2. Randomized experiments

3. Observational studies

2. Randomized experiments

- Treat an input X as $A=1$ with a fair coin!
- Randomized experiments generate data with missing values of counterfactual outcomes.
- Then, association is causation.

$$
\begin{aligned}
& \mathrm{E}\left(Y^{a}\right)=\mathrm{E}\left(Y^{a} \mid A=a\right)=\mathrm{E}(Y \mid A=a) \\
& \text { since } Y^{a} \perp A \text { and } Y^{a}=Y .
\end{aligned}
$$

2. Randomized experiments

- What about the case when we do not treat individuals randomly but conditionally random?
e.g. $A=1$ if X received a transplant, $Y=1$ if X died, and $L=1$
if X was in a critical condition (measured before treatment was assigned). Assume that doctors treated individuals with $A=1$ with probability 0.75 if $L=1$ (with prob 0.5 otherwise).
- The treatment A and the critical condition L are dependent.
- How to compute causal effects in this situation?

2. Randomized experiments

The standardization technique helps us to compute the causal risk ratio

$$
\begin{gathered}
\frac{\operatorname{Pr}\left(Y^{a=1}=1\right)}{\operatorname{Pr}\left(Y^{a=0}=1\right)}=\frac{\sum_{l} \operatorname{Pr}\left(Y^{a=1}=1 \mid L=l\right) \operatorname{Pr}(L=l)}{\sum_{l} \operatorname{Pr}\left(Y^{a=0}=1 \mid L=l\right) \operatorname{Pr}(L=l)} \\
\quad=\frac{\sum_{l} \operatorname{Pr}(Y=1 \mid L=l, A=1) \operatorname{Pr}(L=l)}{\sum_{l} \operatorname{Pr}(Y=1 \mid L=l, A=0) \operatorname{Pr}(L=l)}
\end{gathered}
$$

since $\operatorname{Pr}\left(Y^{a}=1 \mid L=l\right)=\operatorname{Pr}(Y=1 \mid L=l, A=a)$ for all l by the conditional exchangeability.

- That is, we can compute the causal risk ratio in a conditionally randomized experiment via standardization.

2. Randomized experiments

- Inverse probability (IP) weighting is an equivalent to the standardization technique.
- It holds by the conditional exchangeability, that is, we create pseudo-population.

2. Randomized experiments

Figure: 2.1

2. Randomized experiments

Figure: 2.2

2. Randomized experiments

Figure: 2.3

2. Randomized experiments

- Then, we can always compute the causal risks through the two calculation techniques if we can conduct (conditionally) randomized experiments.
Q. Can we always conduct randomized experiments? What about the case when A is the heart transplant treatment and Y indicates death? Doctors assign individuals who are more likely to benefit from the transplant, rather than assigning randomly.
- However, randomized experiments can be impractical in many cases.
- Thus we conduct an observational study as the least bad option.

Table of Contents

Introduction

1. A definition of causal effect
2. Randomized experiments
3. Observational studies

3. Observational studies

- Investigators observe and record.
- From the observed data, how can we compute causal effects?
- We link observational study to conditionally randomized experiment.
What we need are:

1. Exchangeability
2. Positivity
3. Consistency

If the above three conditions hold (actually, we assume.), then we can compute causal effects using observed data.

3. Observational studies

1. Exchangeability

- We "assume" the exchangeability.
- L should be the only variable that is unequally distributed between the treated and the untreated.

3. Observational studies

e.g., heart transplants:
(Case 1) Doctors assign to individuals with low probability of rejecting the transplant (i.e., possessing HLA genes). HLA is not a predictor of Y. Thus the heart transplanting is random within levels of L.
(Case 2) Doctors prefer to transplant hearts into nonsmokers $(U=0)$, which is not known to the investigators. Then, X with $U=1$ has a lower probability of receiving $A=1$. But the doctors should have randomly treating individuals independent to U.

- The investigator should use their expert knowledge to measure sufficiently many Ls, and we should trust the experts' knowledge.

3. Observational studies

2. Positivity

- What if doctors always transplant a heart to individuals in critical condition $L=1$? Then, $\operatorname{Pr}(A=0 \mid L=1)=0$.
- One cannot compute the causal effects through the standardization or IP weighting.
- We assume the following condition to avoid it.

Positivity:

$$
\operatorname{Pr}(A=a \mid L=l)>0
$$

for all l with $\operatorname{Pr}(L=l) \neq 0$.

3. Observational studies

3. Consistency

- We should avoid defining ill-defined counterfactual outcomes.
e.g., III-defined counterfactual outcome Y^{a}

The causal effect of obesity A at age 40 on the risk of mortality Y by age 50. X was not obese at 40 but would have died by age 50 because of an accident.
We should define A more precisely, then probabilities of miscommunications reduce which leads to ill-defined counterfactuals.

3. Observational studies

Summary: how can we use observational data in computing causal effects?

- The study should satisfy three conditions (1), (2) and (3).

Note: We can replace (1) and (2) by other conditions (Chapter 16) and extrapolations via modeling (Chapter 14), respectively. (3) should be satisfied.

