Causal Inference: What If Chapter 1 to 3

Kunwoong Kim

Seoul National University

July 22, 2021

<ロ > < 部 > < 差 > < 差 > 差 多 ペ 2 / 25

Table of Contents

Introduction

- 1. A definition of causal effect
- 2. Randomized experiments

3. Observational studies

Introduction

- We want to answer the following questions.
 - Does cigaratte smoking causes lung cancer?
 - Does the obesity increases mortality?
- Measures of causal effect
- From randomized experiments to observational studies

<ロ > < 団 > < 豆 > < 豆 > < 豆 > < 豆 の < で 3/25

Table of Contents

Introduction

- 1. A definition of causal effect
- 2. Randomized experiments

3. Observational studies

Let $Y \in \{0, 1\}$ (e.g., lung cancer) as an outcome of an input X. Denote Y^a as the outcome under the action $A = a \in \{0, 1\}$ (e.g., smoking).

Definition (Counterfactual outcome)

The variables $Y^{a=1}$ and $Y^{a=0}$ are called as *counterfactual outcomes*.

Definition (Causal effect for an individual)

The treatment A has a *causal effect* on an individual's outcome Y if $Y^{a=1} \neq Y^{a=0}$ for the individual.

Definition (Consistency)

If A = a, then $Y^a = Y^A = Y$.

Individual causal effects cannot be identified: we have missing data. We cannot observe the counterfactual world.

Thus we provide another definition of causal effect: average causal effect. We call an average causal effect of treatment A on an outcome Y is present if

$$\Pr(Y^{a=1} = 1) \neq \Pr(Y^{a=0} = 1)$$

or equivalently,

$$\mathsf{E}(Y^{a=1}) \neq \mathsf{E}(Y^{a=0}).$$

<ロ > < 母 > < 豆 > < 豆 > < 豆 > < 豆 > < ろ < ろ < 6/25

We compute the average causal effects by the following three measures.

1. Causal risk difference

$$\Pr(Y^{a=1} = 1) - \Pr(Y^{a=0} = 1) = 0$$

2. Causal risk ratio

$$\Pr(Y^{a=1}=1)/\Pr(Y^{a=0}=1)=1$$

3. Causal odds ratio

$$\frac{\Pr(Y^{a=1}=1)/\Pr(Y^{a=1}=0)}{\Pr(Y^{a=0}=1)/\Pr(Y^{a=0}=0)} = 1$$

4 ロ ト 4 日 ト 4 王 ト 4 王 ト 王 ク Q で 7/25

We say that treatment A and outcome Y are dependent (associated) if $\Pr(Y = 1 | A = 1) - \Pr(Y = 1 | A = 0) \neq 0$.

1. Associational risk difference

$$\Pr(Y = 1 | A = 1) - \Pr(Y = 1 | A = 0) = 0$$

2. Associational risk ratio

$$\Pr(Y = 1 | A = 1) / \Pr(Y = 1 | A = 0) = 1$$

3. Associational odds ratio

$$\frac{\Pr(Y=1|A=1)/\Pr(Y=0|A=1)}{\Pr(Y=1|A=0)/\Pr(Y=0|A=0)} = 1$$

Association is not causation.

Two disjoint subsets determined by actual treatment vs.
Population under two different treatment values

 $\Pr(Y^a) \neq \Pr(Y|A = a)$

Table 2.1

Figure: 1.1

Table of Contents

Introduction

- 1. A definition of causal effect
- 2. Randomized experiments

<ロト < 母 ト < 三 ト < 三 ト 三 の < C 10/25

3. Observational studies

- ▶ Treat an input X as A = 1 with a fair coin!
- Randomized experiments generate data with missing values of counterfactual outcomes.
- ▶ Then, association is causation.

$$\mathsf{E}(Y^a) = \mathsf{E}(Y^a | A = a) = \mathsf{E}(Y | A = a)$$

since $Y^a \perp A$ and $Y^a = Y$.

What about the case when we do not treat individuals randomly but conditionally random?

e.g. A = 1 if X received a transplant, Y = 1 if X died, and L = 1 if X was in a critical condition (measured before treatment was assigned). Assume that doctors treated individuals with A = 1 with probability 0.75 if L = 1 (with prob 0.5 otherwise).

▶ The treatment A and the critical condition L are dependent.

< □ ▶ < @ ▶ < E ▶ < E ▶ E の < 0 12/25

How to compute causal effects in this situation?

The standardization technique helps us to compute the causal risk ratio

$$\begin{aligned} \frac{\Pr(Y^{a=1}=1)}{\Pr(Y^{a=0}=1)} &= \frac{\sum_{l} \Pr(Y^{a=1}=1|L=l) \Pr(L=l)}{\sum_{l} \Pr(Y^{a=0}=1|L=l) \Pr(L=l)} \\ &= \frac{\sum_{l} \Pr(Y=1|L=l, A=1) \Pr(L=l)}{\sum_{l} \Pr(Y=1|L=l, A=0) \Pr(L=l)} \end{aligned}$$

since $\Pr(Y^a = 1 | L = l) = \Pr(Y = 1 | L = l, A = a)$ for all l by the conditional exchangeability.

That is, we can compute the causal risk ratio in a conditionally randomized experiment via standardization.

- Inverse probability (IP) weighting is an equivalent to the standardization technique.
- It holds by the conditional exchangeability, that is, we create pseudo-population.

Figure: 2.1

Figure: 2.2

・ロト・4回ト・4回ト・4回ト 回・99()

Figure: 2.3

Then, we can always compute the causal risks through the two calculation techniques if we can conduct (conditionally) randomized experiments.

Q. Can we always conduct randomized experiments? What about the case when A is the heart transplant treatment and Y indicates death? Doctors assign individuals who are more likely to benefit from the transplant, rather than assigning randomly.

- However, randomized experiments can be impractical in many cases.
- Thus we conduct an observational study as the least bad option.

Table of Contents

Introduction

- 1. A definition of causal effect
- 2. Randomized experiments

<ロト < 母 ト < 三 ト < 三 ト 三 の Q (~ 19/25

3. Observational studies

- Investigators observe and record.
- From the observed data, how can we compute causal effects?
- We link observational study to conditionally randomized experiment.

What we need are:

- 1. Exchangeability
- 2. Positivity
- 3. Consistency

If the above three conditions hold (actually, we assume.), then we can compute causal effects using observed data.

- 1. Exchangeability
 - ▶ We "assume" the exchangeability.
 - L should be the only variable that is unequally distributed between the treated and the untreated.

<ロト < 母 ト < 王 ト < 王 ト 王 の Q @ 21/25

e.g., heart transplants:

(Case 1) Doctors assign to individuals with low probability of rejecting the transplant (i.e., possessing HLA genes). HLA is not a predictor of Y. Thus the heart transplanting is random within levels of L.

(Case 2) Doctors prefer to transplant hearts into nonsmokers (U = 0), which is not known to the investigators. Then, X with U = 1 has a lower probability of receiving A = 1. But the doctors should have randomly treating individuals independent to U.

The investigator should use their expert knowledge to measure sufficiently many Ls, and we should trust the experts' knowledge.

2. Positivity

- ▶ What if doctors always transplant a heart to individuals in critical condition L = 1? Then, Pr(A = 0|L = 1) = 0.
- One cannot compute the causal effects through the standardization or IP weighting.

• We assume the following condition to avoid it. Positivity:

$$Pr(A = a | L = l) > 0$$

for all l with $Pr(L = l) \neq 0$.

3. Consistency

▶ We should avoid defining ill-defined counterfactual outcomes.

e.g., Ill-defined counterfactual outcome $Y^{\boldsymbol{a}}$

The causal effect of obesity A at age 40 on the risk of mortality Y by age 50. X was not obese at 40 but would have died by age 50 because of an accident.

<□▶ < @▶ < E▶ < E▶ E の < C 24/25</p>

We should define ${\cal A}$ more precisely, then probabilities of miscommunications reduce which leads to ill-defined counterfactuals.

Summary: how can we use observational data in computing causal effects?

► The study should satisfy three conditions (1), (2) and (3). Note: We can replace (1) and (2) by other conditions (Chapter 16) and extrapolations via modeling (Chapter 14), respectively. (3) should be satisfied.